技術文章
TECHNICAL ARTICLES以硅(Si)、砷化鎵(GaAs)為代表的代和第二代半導體材料的高速發展,推動了微電子、光電子技術的迅猛發展。然而受材料性能所限,這些半導體材料制成的器件大都只能在200℃以下的環境中工作,不能滿足現代電子技術對高溫、高頻、高壓以及抗輻射器件的要求。作為第三代寬帶隙半導體材料的代表,碳化硅(SiC)單晶材料具有禁帶寬度大、熱導率高、電子飽和遷移速率高和擊穿電場高等性質。SiC器件在高溫、高壓、高頻、大功率電子器件領域和航天、軍工、核能等環境應用領域有著不可替代的優勢,彌補了傳統半導體材料器件在實際應用中的缺陷,正逐漸成為功率半導體的主流。
SiC晶體結構具有同質多型的特點,其基本結構是Si-C四面體結構,它是由四個Si原子形成的四面體包圍一個碳原子組成,按相同的方式一個Si原子也被四個碳原子的四面體包圍,屬于密堆積結構。SiC多型晶體的晶格常數a可以看作常數,而晶格常數c不同,并由此構成了數目很多的SiC同質多型體。若把這些多型體看作是由六方密堆積的Si層組成,緊靠著Si原子有一層碳原子存在,在密排面上Si-C雙原子層有三種不同的堆垛位置,稱為A、B和C。由于Si-C雙原子層的堆垛順序不同,就會形成不同結構的SiC晶體。ABC…堆積形成3C-SiC結構,ABAC…堆積形成4H-SiC結構,ABCACB…堆積形成6H-SiC結構。這些晶型屬于三種基本的結晶學類型:立方(C)、六方(H)和菱形(R),目前已被證實的SiC多形體已超過200種,其中較為常見的有3C、4H、6H和15R等。
這些多型的SiC晶體雖然具有相同的化學成分,但是它們的物理性質,尤其是帶隙、載流子遷移率、擊穿電壓等半導體特性有很大的差別。目前,4H-SiC應用廣,廣泛應用于電力電子器件和微波功率器件。
通常半導體材料的晶錠生長是采用元素半導體或化合物半導體熔融液中的直拉單晶法或籽晶凝固法。然而由于熱動力學原因,固態SiC只有在壓強超過1×105atm、溫度超過3200℃時才會熔化。目前,晶體生長實驗室及工廠所擁有的技術手段還無法達到這樣的要求。迄今為止,物理氣相傳輸法(PVT)是生長大尺寸、高質量SiC單晶的方法,也稱為改良的Lely法或籽晶升華法,這種方法占據了SiC圓晶供應量的90%以上。此外,高溫化學氣相沉積法(HTCVD)也可以用來制備SiC單晶。
物理氣相傳輸法
PVT法生長SiC單晶一般采用感應加熱方式,在真空下或惰性氣體氣氛保護的石墨坩堝中,以高純SiC粉為原料,在一定的溫度和壓力下,固態SiC粉在高溫下發生分解升華,生成具有一定結構形態的氣相組分SimCn,由于石墨坩堝反應腔軸向存在著溫度梯度,氣相組分SimCn從溫度相對較高的生長原料區向溫度相對較低的生長界面(晶體/氣相界面)運動,并在SiC籽晶上沉積與結晶。如果這個過程持續一定時間,生長界面將穩定地向原料區推移,終生成SiC晶體。
PVT法采用SiC籽晶控制所生長晶體的構型,克服了Lely 法自發成核生長的缺點,可得到單一構型的SiC 單晶,生長出較大尺寸的SiC 單晶,生長壓力在一個大氣壓(1atm)以內,生長溫度在2000℃-2500℃之間,遠低于熔體生長所需的壓力和溫度。PVT法生長SiC晶體需要建立一個合適的溫場,從而確保從高溫到低溫形成穩定的氣相SiC輸運流,并確保氣相SiC能夠在籽晶上成核生長。然而,在晶體生長過程中涉及到多個生長參數的動態控制問題,而這些工藝參數之間又是相互制約的,因此該方法生長SiC單晶的過程難于控制。此外,生長過程中SiC粉料不斷碳化也會對氣相組成以及生長過飽和度造成一定的影響。諸多因素使得目前上只有少數幾個機構掌握了PVT法生長SiC單晶的關鍵技術。
高溫化學氣相沉積法
HTCVD法制備SiC晶體一般利用感應射頻或石墨托盤電阻加熱使反應室保持所需要的反應溫度,反應氣體SiH4和C2H4由H2或He載帶通入反應器中,在高溫下發生分解生成SiC并附著在襯底材料表面,SiC晶體沿著材料表面不斷生長,反應中產生的殘余氣體由反應器上的排氣孔排除。通過控制反應器容積的大小、反應溫度、壓力和氣體的組分等,得到準確的工藝條件。
該方法已經被用于在晶體生長工藝中獲得高質量外延材料,瑞典的Okmetic公司于20世紀90年代開始研究此技術,并且在歐洲申請了該技術。這種方法可以生長高純度、大尺寸的SiC晶體,并有效的減少晶體中的缺陷。但如何阻止SiC在生長系統中的沉積也是該方法所面臨的主要問題。
提高SiC晶體質量,就意味著必須降低晶體中的缺陷, PVT法生長SiC單晶需要控制的工藝參數較多,并且這些參數在生長過程中不斷發生變化,所以對晶體中的缺陷控制比較困難。SiC單晶的缺陷主要包括微管、多型、位錯、層錯和小角晶界等。由于SiC晶體中一種缺陷的存在往往會誘發其它缺陷產生,因此,對這些缺陷進行研究并且在晶體生長過程中對其進行有效的控制,對于提高SiC晶體質量是非常重要的。
微管
微管缺陷嚴重阻礙了多種SiC器件的商業化,被稱為SiC器件的“殺手型”缺陷。大多數關于微管缺陷形成機制的討論都是基于微管與大伯格斯矢量超螺形位錯相結合的Frank理論。生長過程中,沿超螺旋位錯核心方向的高應變能密度會導致該處優先升華,因此微管缺陷具有空心的特征。微管缺陷的產生往往會伴隨其它過程的出現,如微管道分解、遷移、轉變和重新結合等,并且隨著晶體直徑的增加,控制所有生長參數達到所需的精度越來越困難,微管缺陷的密度也會隨之增加。
盡管微管的形成具有不同的理論和技術方面的原因,通過對生長工藝的改進,過去幾年里SiC單晶的微管密度仍然在持續下降。2000年,Müller等介紹了Cree公司制備出的直徑為25mm的無微管缺陷4H-SiC晶片,直徑為50mm的4H-SiC晶片的微管密度僅為1.1cm-1,這種質量的材料已經被證明非常適合制造大面積功率器件。2009年Gupta等發表文章稱,美國Ⅱ-Ⅵ公司制備出直徑為106.4mm的半絕緣6H-SiC晶錠,其晶片微管密度在2~8cm-2范圍內。2009年Schmitt等介紹了德國SiCrystal公司在提高3inch 4H-SiC晶片結晶質量上取得的進展,其晶片微管密度小于0.1cm-2。2009年,Leonard等報道了Cree公司出品的經KOH腐蝕的無微管100mm 4H-SiC晶片。2009年,Gao等人采用升華法在面為籽晶的6H-SiC單晶中得到了無微管的高質量單晶區。目前山東天岳生產的4英寸4H-SiC晶片,其微管密度為0.3cm-2。近來,隨著技術的進步,減少甚至*消除這類缺陷已成為可能。
多型
確保單一晶型對于SiC單晶襯底是非常重要的,晶型的轉變不但會嚴重破壞SiC晶體的結晶完整性、改變材料的電學特性,還為微管缺陷提供了成核點,并延伸至晶錠的其余部分。不同SiC晶型之間的本質區別就在于<0001>晶向上Si-C雙原子層的堆垛順序發生了改變。當堆垛次序保持不變時,SiC晶體的晶型就不會改變。當晶體生長是通過SiC生長表面上臺階的繁殖進行時,相對容易保持單一類型。然而,SiC生長過程中有一個臺階聚集的傾向,這就會形成大的臺面,臺階邊緣數量的減少,會使得到達的Si和C原子可能無法擴散到臺階邊緣,而在臺面中心形成新的晶核,這些新晶核可能具有與底層材料不同的雙層堆垛次序,從而導致晶型的改變。
在晶體生長過程中,各種晶型的SiC晶體不存在固定的形成溫度范圍。溫度、雜質、壓力、過飽和度、籽晶取向和極性以及生長區Si/C原子比,都會影響到SiC多型結構的形成。由于多型共生會對晶體的結晶質量產生致命的影響,從某種意義上說,如何抑制和消除多型共生缺陷,是PVT法SiC晶體生長研究的一個重要任務。
小角晶界
在晶體生長過程中,由于氣相組分過飽和使晶坯邊緣進行擇優生長,從而產生了偏離籽晶方向的晶格失配區域,在晶格失配區域,不同晶向的晶粒之間形成晶界。晶界通常由擴展邊緣和螺旋位錯構成,并貫穿整個晶錠,這對器件結構是致命的。靠近晶體邊緣的小角晶界是大直徑晶體在非優化工藝條件下生長時形成的,它是SiC材料中具有輕度位錯的不同區域之間的交界,小角晶界作為應力中心,增加了外延生長過程中晶片在缺陷處破裂的可能性,因此應盡量減少或消除晶體中小角晶界的密度。通過觀察同一個晶棒不同生長階段晶片的KOH腐蝕形貌,發現沿著<1-100>方向的小角晶界是在生長過程中刃位錯的滑移引入的,而不是在生長初期形成的。生長室內的徑向溫度梯度對小角晶界的結構和形貌具有一定的影響,小的徑向溫度梯度可以減少小角晶界的位錯形成。
應力
SiC晶體中的應力通常是指在沒有外力或外力矩的作用下在晶體內部依然存在并保持自身平衡的力。SiC晶體中的應力來源有很多,主要有兩種,一種是來源于SiC晶體匯總各種缺陷,如前所述的缺陷與周圍的正常格點之間產生畸變,導致在缺陷的周圍出現一定的應力場。如微管道缺陷就會在其周圍形成一定的應力場。另一種是由于SiC晶體的非均勻性生長造成的,PVT法生長SiC晶體過程中溫度梯度是晶體生長的驅動力,在坩堝內同時存在著軸向和徑向的溫度梯度。溫度梯度的存在導致SiC表面生長速率的不一致,從而使大部分生長出的SiC晶錠表面呈現凸起或凹陷的現象。此外,SiC晶體中的熱應力還受晶體形狀、籽晶與石墨蓋的粘接方式、晶體與坩堝壁的接觸等有關,這些因素會導致在生長出的SiC晶體中不可避免的存在著軸向和徑向的應力場。
與半導體Si單晶材料類似,SiC單晶材料的發展方向也是向著單晶直徑逐漸擴大、晶體質量逐漸提高、單位面積成本逐漸降低的趨勢發展。目前SiC的主要應用領域有LED照明、雷達、太陽能逆變,未來SiC器件將在智能電網、電動機車、通訊等領域擴展其用途,市場前景不可估量。隨著SiC晶體生產成本的降低,SiC材料正逐步取代Si材料成為功率半導體材料的主流,打破Si芯片由于材料本身性能而產生的瓶頸,SiC材料將會給電子產業帶來革命性的變革。
SiC晶體高溫退火爐 | |
皓越科技 電子半導體相關裝備 1、硅晶體及第三代半導體晶體生長設備 用于半導體Si晶體、SiC晶體、GaN晶體、AlN晶體和LED基體藍寶石晶體生長,以及其在基體材料上進行外延生長。 2、晶體熱處理和快速退火設備 用于半導體行業晶體生產過程熱處理工藝,芯片生產氧化及擴散工藝,離子注入后快速退火工藝。 3、設備及周邊產品的售后服務 提供設備的安裝調試、維修保養,以及周邊零部件的*工作。 | |
裝備特點 工藝:用于SiC、GaN等的高溫活化退火等工藝 |
上海皓越真空設備有限公司,一家集研發、生產、銷售電爐為一體的高新技術企業。公司一直專注于半導體材料、碳材料、先進陶瓷與復合材料和鋰電材料四大行業,擁有豐富的行業經驗和技術,竭誠服務于客戶,提供一體化產業解決方案。